
Static
Interfaces

Polymorphism

Check out OnToInterfaces from SVN

It was a little bit too long (but you already
knew that!)
So I changed the "Perfect score" number
◦ From 48 to 42 for the written part
◦ From 62 to 53 for the programming part.
The bottom line is that your exam percentage
is the total of your two scores divided by 95
(instead of 110).
How I set up the gradebook:
◦ Each category now counts the percent it will count

at the end of the term.

Static fields and methods
Variable scope
Packages
Interfaces and polymorphism

public static void main(String[] args) {
double x= 1.0;
double y = 2.5;
swapOrNot(x,y);
System.out.println("x is " + x);

}

private static void swapOrNot(double a, double b) {
double temp = a;
a = b;
b = temp;

} Draw a box-and-pointer diagram
and predict the output.

Q1

static members (fields and methods)…
◦ are not part of objects
◦ are part of the class itself

Mnemonic: objects can be passed around, but
static members stay put

Cannot refer to this
◦ They aren’t in an object, so there is no this!
◦ Thus they cannot refer to instance fields or non-

static methods of the class.

Are called without an implicit parameter
◦ Math.sqrt(2.0)

Class name, not object
reference

Helper methods that don’t refer to this
◦ Example: creating list of Coordinates for glider
Utility methods
◦ Example:

public class Geometry3D {
public static double sphereVolume(double radius) {

…
}
}

main() method
◦ Why static? What objects exist when program

starts?

Q2

We’ve seen static final fields (constants)

Can also have static fields that aren’t final
◦ Should be private
◦ Used for information shared between instances of a

class

Q3

In the declaration (if it's simple)
private static double maxTriangleWidth =

COMPONENT_WIDTH - 2*HORZ_INSET;

or use “static initializer” blocks:
public static BigInteger[]

arrayCache = new BigInteger[4096],
newRow = new BigInteger[4096];

static { arrayCache[0] = newRow[0] = BigInteger.ZERO;}

Polygon

Scope: the region of a program in which a
variable can be accessed
◦ Parameter scope: the whole method body
◦ Local variable scope: from declaration to block end:

public double area() {
double sum = 0.0;
Point2D prev =

this.pts.get(this.pts.size() - 1);
for (Point2D p : this.pts) {
sum += prev.getX() * p.getY();
sum -= prev.getY() * p.getX();
prev = p;

}
return Math.abs(sum / 2.0);

} Q4

Member scope: anywhere in the class,
including before its declaration
◦ This lets methods call other methods later in the

class.

public class members can be accessed
outside the class using “qualified names”
◦ Math.sqrt()
◦ System.in

Q5

public class TempReading {
private double temp;

public void setTemp(double temp) {
… temp …

}
// …

}

this.temp = temp;

What does this
“temp” refer

to?Always qualify field references
with this. It prevents
accidental shadowing.

Q6

Static imports let us use unqualified names:
◦ import static java.lang.Math.PI;
◦ import static java.lang.Math.cos;
◦ import static java.lang.Math.sin;

See the Polygon.drawOn() method

Let us group related
classes
We’ve been using them:
◦ javax.swing
◦ java.awt
◦ java.lang
We can (and should) group
our own code into
packages
◦ Eclipse makes it easy…

Q7

Remember the problem with Timer?
◦ Two Timer classes in different packages
◦ Was OK, because packages had different names

Package naming convention: reverse URLs
◦ Examples:

edu.roseHulman.csse.courseware.scheduling
com.xkcd.comicSearch

Specifies the
company or
organization

Can group related
classes as the

company sees fit

Q8

Can use import to get classes from other
packages:
◦ import java.awt.Rectangle;

Suppose we have our own Rectangle class
and we want to use ours and Java’s?
◦ Can use “fully qualified names”:

java.awt.Rectangle rect =
new java.awt.Rectangle(10,20,30,40);

◦ U-G-L-Y, but sometimes needed.

I don’t even want this
package. Why did I

sign up for the
stinging insect of the
month club anyway?

Express common operations that multiple
classes might have in common

Make “client” code more reusable

Provide method signatures and docs.

Do not provide implementation or fields

Q9

An Interface type is like a contract

◦ A class can promise to implement an interface
That is, implement every method
Compiler enforces the contract.

◦ Client code knows that the class will have those
methods

◦ Any client code designed to use the interface type
can automatically use the class!

Charges

public interface Charge {
/**
* regular javadocs here
*/
Vector forceAt(int x, int y);

/**
* regular javadocs here
*/
void drawOn(Graphics2D g);

}

public class PointCharge implements Charge {
…

}

interface, not class

No method
body, just a
semi-colon

No “public”,
automatically

are so

PointCharge promises to implement all the
methods declared in the Charge interface

<<interface>>
Charge

PointCharge LinearCharge

Space

Q10

Distinguishes
interfaces

from classes

Hollow, closed
triangular tip

means
PointCharge is a

Charge

Can pass an instance of a class where an
interface type is expected
◦ But only if the class implements the interface
We can pass LinearCharges to Space’s
add(Charge c) method without changing
Space!
We can pass any any object from a class that
implements ActionListener to a JButton’s
addActionListener method !
Use interface types for fields, method
parameters, and return types whenever
possible

Q11

Charge c = new PointCharge(…);
Vector v1 = c.forceAt(…);
c = new LinearCharge(…);
Vector v2 = c.forceAt(…);

The type of the actual object determines the
method used.

Q12

java.util.Comparable
◦ Says that there is a "less than" ordering relation

between objects of the class that implements
Comparable.

public class Fraction implements Comparable<Fraction>{

. . .

@Override
public int compareTo(Fraction other){

return this.numerator*other.denominator –
this.denominator*other.numerator;

}

Implementing this interface allows us to call
Arrays.sort(), etc. with an array of Fractions

Use Windows Explorer (MY Documents\...) to
examine the folder structure of the
OnToInterfaces packages
In particular note
◦ …JavaWorkspace\OnToInterfaces\src\edu\

roseHulman\csse220\charges

Origin:
◦ Poly many
◦ Morph shape
Classes implementing an interface give many
differently “shaped” objects for the interface
type

Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

Q13,14

	CSSE 220 Day 13
	What I did about the exam
	Questions?
	Today: A Very Full Schedule
	Call by Value
	What is static Anyway?
	Static Methods
	When to Declare Static Methods
	Static Fields
	Two Ways to Initialize
	Exercise
	Variable Scope
	Member (Field or Method) Scope
	Overlapping Scope and Shadowing
	Last Bit of Static
	Packages
	Avoiding Package Name Clashes
	Qualified Names and Imports
	Package Tracking
	Interface Types
	Interface Types: Key Idea
	Example
	Notation: In Code
	Notation: In UML diagram
	How does all this help reuse?
	Why is this OK?
	An important Inteface�(we saw this in the Fraction class)
	Packages and Folders
	Polymorphism

